88 research outputs found

    Rapid Environmental Quenching of Satellite Dwarf Galaxies in the Local Group

    Get PDF
    In the Local Group, nearly all of the dwarf galaxies (M_star < 10^9 M_sun) that are satellites within 300 kpc (the virial radius) of the Milky Way (MW) and Andromeda (M31) have quiescent star formation and little-to-no cold gas. This contrasts strongly with comparatively isolated dwarf galaxies, which are almost all actively star-forming and gas-rich. This near dichotomy implies a rapid transformation of satellite dwarf galaxies after falling into the halos of the MW or M31. We combine the observed quiescent fractions for satellites of the MW and M31 with the infall times of satellites from the Exploring the Local Volume in Simulations (ELVIS) suite of cosmological zoom-in simulations to determine the typical timescales over which environmental processes within the MW/M31 halos remove gas and quench star formation in low-mass satellite galaxies. The quenching timescales for satellites with M_star < 10^8 M_sun are short, < 2 Gyr, and quenching is more rapid at lower M_star. These satellite quenching timescales can be 1 - 2 Gyr longer if one includes the time that satellites were environmentally preprocessed by low-mass groups prior to MW/M31 infall. We compare with quenching timescales for more massive satellites from previous works to synthesize the nature of satellite galaxy quenching across the observable range of M_star = 10^{3-11} M_sun. The satellite quenching timescale increases rapidly with satellite M_star, peaking at ~9.5 Gyr for M_star ~ 10^9 M_sun, and the timescale rapidly decreases at higher M_star to < 5 Gyr at M_star > 5 x 10^9 M_sun. Overall, galaxies with M_star ~ 10^9 M_sun, similar to the Magellanic Clouds, exhibit the longest quenching timescales, regardless of environmental or internal mechanisms.Comment: 6 pages, 3 figures. Accepted in ApJ Letters. Matches published versio

    The WHIQII Survey: Metallicities and Spectroscopic Properties of Luminous Compact Blue Galaxies

    Get PDF
    As part of the WIYN High Image Quality Indiana Irvine (WHIQII) survey, we present 123 spectra of emission-line galaxies, selected on intermediate redshift (.4<z<.8) galaxies with blue colors that appear physically compact. The sample includes 15 true Luminous Compact Blue Galaxies (LCBGs) and an additional 27 slightly less extreme emission-line systems. These galaxies represent a highly evolving class that may play an important role in the decline of star formation since z~1, but their exact nature and evolutionary pathways remain a mystery. Here, we use emission lines to determine metallicities and ionization parameters, constraining their intrinsic properties and state of star formation. Some LCBG metallicities are consistent with a "bursting dwarf" scenario, while a substantial fraction of others are not, further confirming that LCBGs are a highly heterogeneous population but are broadly consistent with the intermediate redshift field. In agreement with previous studies, we observe overall evolution in the luminosity-metallicity relation at intermediate redshift. Our sample, and particularly the LCBGs, occupy a region in the empirical R23-O32 plane that differs from luminous local galaxies and is more consistent with dwarf Irregulars at the present epoch, suggesting that cosmic "downsizing" is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.Comment: ApJ accepted, 17 pages, 20 figures, 2 tables (complete tables in published version

    Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite, Leo V

    Get PDF
    We present a chemodynamical analysis of the Leo~V dwarf galaxy, based on Keck II DEIMOS spectra of 8 member stars. We find a systemic velocity for the system of ⟨vr⟩=170.9βˆ’1.9+2.1\langle v_r\rangle = 170.9^{+ 2.1}_{-1.9}kmsβˆ’1^{-1}, and barely resolve a velocity dispersion for the system, with Οƒvr=2.3βˆ’1.6+3.2\sigma_{vr} = 2.3^{+3.2}_{-1.6}kmsβˆ’1^{-1}, consistent with previous studies of Leo~V. The poorly resolved dispersion means we are unable to adequately constrain the dark matter content of Leo~V. We find an average metallicity for the dwarf of [Fe/H]=βˆ’2.48Β±0.21 = -2.48\pm0.21, and measure a significant spread in the iron abundance of its member stars, with βˆ’3.1≀-3.1\le[Fe/H]β‰€βˆ’1.9\le-1.9 dex, which cleanly identifies Leo~V as a dwarf galaxy that has been able to self-enrich its stellar population through extended star formation. Owing to the tentative photometric evidence for tidal substructure around Leo~V, we also investigate whether there is any evidence for tidal stripping or shocking of the system within its dynamics. We measure a significant velocity gradient across the system, of dvdΟ‡=βˆ’4.1βˆ’2.6+2.8\frac{{\rm d}v}{{\rm d}\chi} = -4.1^{+2.8}_{-2.6}kmsβˆ’1^{-1} per arcmin (or dvdΟ‡=βˆ’71.9βˆ’45.6+50.8\frac{{\rm d}v}{{\rm d}\chi} = -71.9^{+50.8}_{-45.6}kmsβˆ’1^{-1}~kpcβˆ’1^{-1}), which points almost directly toward the Galactic centre. We argue that Leo~V is likely a dwarf on the brink of dissolution, having just barely survived a past encounter with the centre of the Milky Way.Comment: 14 pages, 12 figures, accepted for publication in MNRAS. Updated to include minor revisions from referee proces

    A Dichotomy in Satellite Quenching Around L* Galaxies

    Full text link
    We examine the star formation properties of bright (~0.1 L*) satellites around isolated ~L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey DR7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also plays at least an indirect role in quenching star formation in their bright satellites. The previously-reported tendency for "galactic conformity" in color/morphology may be a by-product of this host-specific quenching dichotomy. The S\'ersic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter halos that are ~45% more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ~30% of ~0.1 L* galaxies that fall in from the field are quenched around passive hosts, compared with ~0% around star forming hosts.Comment: 14 pages, 9 figure

    Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function

    Get PDF
    We correct the observed Milky Way satellite luminosity function for luminosity bias using published completeness limits for the Sloan Digital Sky Survey DR5. Assuming that the spatial distribution of Milky Way satellites tracks the subhalos found in the Via Lactea LCDM N-body simulation, we show that there should be between ~300 and ~600 satellites within 400 kpc of the Sun that are brighter than the faintest known dwarf galaxies, and that there may be as many as ~ 1000, depending on assumptions. By taking into account completeness limits, we show that the radial distribution of known Milky Way dwarfs is consistent with our assumption that the full satellite population tracks that of subhalos. These results alleviate the primary worries associated with the so-called missing satellites problem in CDM. We show that future, deep wide-field surveys such as SkyMapper, the Dark Energy Survey (DES), PanSTARRS, and the Large Synoptic Survey Telescope (LSST) will deliver a complete census of ultra-faint dwarf satellites out to the Milky Way virial radius, offer new limits on the free-streaming scale of dark matter, and provide unprecedented constraints on the low-luminosity threshold of galaxy formation.Comment: 13 pages, 10 figures, ApJ In Pres
    • …
    corecore